skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buderman, Frances"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Identifying the specific environmental features and associated density‐dependent processes that limit population growth is central to both ecology and conservation. Comparative assessments of sympatric species allow for inference about how ecologically similar species differentially respond to their shared environment, which can be used to inform community‐level conservation strategies. Comparative assessments can nevertheless be complicated by interactions and feedback loops among the species in question. We developed an integrated population model based on 61 years of ecological data describing the demographic histories of Canvasbacks (Aythya valisineria) and Redheads (Aythya americana), two species of migratory diving ducks that utilize similar breeding habitats and affect each other's demography through interspecific nest parasitism. We combined this model with a transient life table response experiment to determine the extent that demographic rates, and their contributions to population growth, were similar between these two species. We found that demographic rates and, to a lesser extent, their contributions to population growth covaried between Canvasbacks and Redheads, but the trajectories of population abundances widely diverged between the two species during the end of the twentieth century due to inherent differences between the species life histories and sensitivities to both environmental variation and harvest pressure. We found that annual survival of both species increased during years of restrictive harvest regulations; however, recent harvest pressure on female Canvasbacks may be contributing to population declines. Despite periodic, and often dramatic, increases in breeding abundance during wet years, the number of breeding Canvasbacks declined by 13% whereas the number of breeding Redheads has increased by 37% since 1961. Reductions in harvest pressure and improvements in submerged aquatic vegetation throughout the wintering grounds have mediated the extent to which populations of both species contracted during dry years in the Prairie Pothole Region. However, continued degradation of breeding habitats through climate‐related shifts in wetland hydrology and agricultural conversion of surrounding grassland habitats may have exceeded the capacity for demographic compensation during the nonbreeding season. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract While the quantity, quality, and variety of movement data has increased, methods that jointly allow for population- and species-level movement parameters to be estimated are still needed. We present a formal data integration approach to combine individual-level movement and population-level distribution data. We show how formal data integration can be used to improve precision of individual and population level movement parameters and allow additional population level metrics (e.g., connectivity) to be formally quantified.We describe three components needed for an Integrated Movement Model (IMM): a model for individual movement, a model for among-individual heterogeneity, and a model to quantify changes in species distribution. We outline a general IMM framework and develop and apply a specific stochastic differential equation model to a case study of telemetry and species distribution data for golden eagles in western North American during spring migration.We estimate eagle movements during spring migration from data collected between 2011 and 2019. Individual heterogeneity in migration behavior was modeled for two sub-populations, individuals that make significant northward migrations and those that remained in the southern Rocky Mountain region through the summer. As is the case with most tracking studies, the sample population of individual telemetered birds is not representative of the population, and underrepresents the proportion of long-distance migrants in. The IMM was able to provide a more biological accurate subpopulation structure by jointly estimating the structure using the species distribution data. In addition, the integrated approach a) improves accuracy of other estimated movement parameters, b) allows us to estimate the proportion of migratory and non-migratory birds in a given location and time, and c) estimate future spatio-temporal distributions of birds given a wintering location, which provide estimates of seasonal connectivity and migratory routes.We demonstrate how IMMs can be successfully used to address the challenge of estimating accurate population level movement parameters. Our approach can be generalized to a broad range of available movement models and data types, allowing us to significantly improve our knowledge of migration ecology across taxonomic groups, and address population and continental level information needs for conservation and management. 
    more » « less
  3. Free, publicly-accessible full text available December 1, 2025
  4. Abstract Climate and land use change are two of the primary threats to global biodiversity; however, each species within a community may respond differently to these facets of global change. Although it is typically assumed that species use the habitat that is advantageous for survival and reproduction, anthropogenic changes to the environment can create ecological traps, making it critical to assess both habitat selection (e.g. where species congregate on the landscape) and the influence of selected habitats on the demographic processes that govern population dynamics.We used a long‐term (1958–2011), large‐scale, multi‐species dataset for waterfowl that spans the United States and Canada to estimate species‐specific responses to climate and land use variables in a landscape that has undergone significant environmental change across space and time. We first estimated the effects of change in climate and land use variables on habitat selection and population dynamics for nine species. We then hypothesized that species‐specific responses to environmental change would scale with life‐history traits, specifically: longevity, nesting phenology and female breeding site fidelity.We observed species‐level heterogeneity in the demographic and habitat selection responses to climate and land use change, which would complicate community‐level habitat management. Our work highlights the importance of multi‐species monitoring and community‐level analysis, even among closely related species.We detected several relationships between life‐history traits, particularly nesting phenology, and species' responses to environmental change. One species, the early‐nesting northern pintail (Anas acuta), was consistently at the extreme end of responses to land use and climate predictors and has been a species of conservation concern since their population began to decline in the 1980s. They, and the blue‐winged teal, also demonstrated a positive habitat selection response to the proportion of cropland on the landscape that simultaneously reduced abundance the following year, indicative of susceptibility to ecological traps.By distilling the diversity of species' responses to environmental change within a community, our methodological approach and findings will help improve predictions of community responses to global change and can inform multi‐species management and conservation plans in dynamic landscapes that are based on simple tenets of life‐history theory. 
    more » « less
  5. ABSTRACT MotivationSNAPSHOT USA is an annual, multicontributor camera trap survey of mammals across the United States. The growing SNAPSHOT USA dataset is intended for tracking the spatial and temporal responses of mammal populations to changes in land use, land cover and climate. These data will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, as well as the impacts of species interactions on daily activity patterns. Main Types of Variables ContainedSNAPSHOT USA 2019–2023 contains 987,979 records of camera trap image sequence data and 9694 records of camera trap deployment metadata. Spatial Location and GrainData were collected across the United States of America in all 50 states, 12 ecoregions and many ecosystems. Time Period and GrainData were collected between 1st August and 29th December each year from 2019 to 2023. Major Taxa and Level of MeasurementThe dataset includes a wide range of taxa but is primarily focused on medium to large mammals. Software FormatSNAPSHOT USA 2019–2023 comprises two .csv files. The original data can be found within the SNAPSHOT USA Initiative in the Wildlife Insights platform. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026